EDWARDS AQUIFER BIBLIOGRAPHY THROUGH 2010

Compiled by:
Roberto Esquilin, P.G.
Hydrogeologist
Robert Clarkson
Program Manager

August 2011
TABLE OF CONTENTS

INTRODUCTION
- Purpose and Scope ... 1
- Description of the Edwards Aquifer ... 2
- Other Edwards Aquifer-related Bibliographies 4
- Methodology and Approach ... 4
- References Organization .. 5
- Acknowledgements ... 6
- References Cited in the Introduction ... 7

BIBLIOGRAPHY

- Overview Studies ... 10
- Archeology ... 25
- Biography ... 27
- Biology .. 27
 - Invertebrates .. 50
 - Crustaceans .. 54
 - Insects ... 55
 - Mollusks .. 60
 - Plants, Algae, Fungi, Bacteria .. 63
 - Vertebrates .. 71
 - Amphibians .. 71
 - Fishes ... 79
- Climatology .. 94
- Education ... 98
- Geochemistry ... 100
- Geology .. 108
 - Economic Geology .. 121
 - Environmental Geology ... 124
 - Paleontology .. 127
 - Sedimentation, Sedimentary Petrology 129
 - Stratigraphy ... 135
 - Structural Geology ... 141
- Geomorphology and Caves ... 149
- History .. 157
- Hydrology and Hydrogeology ... 160
 - Floods and Droughts .. 192
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundwater Movement</td>
<td>198</td>
</tr>
<tr>
<td>Groundwater Recharge, Recharge Zone</td>
<td>213</td>
</tr>
<tr>
<td>Springs, Groundwater Discharge</td>
<td>224</td>
</tr>
<tr>
<td>Surface Water/Groundwater Relation</td>
<td>232</td>
</tr>
<tr>
<td>Water Quality</td>
<td>239</td>
</tr>
<tr>
<td>Water Resources Data</td>
<td>259</td>
</tr>
<tr>
<td>Water-Resources Planning and Management</td>
<td>276</td>
</tr>
<tr>
<td>Water Use</td>
<td>306</td>
</tr>
<tr>
<td>Land Use</td>
<td>311</td>
</tr>
<tr>
<td>Recreation</td>
<td>313</td>
</tr>
<tr>
<td>Remote Sensing</td>
<td>315</td>
</tr>
<tr>
<td>Soils</td>
<td>316</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>317</td>
</tr>
</tbody>
</table>
INTRODUCTION

The San Antonio segment of the Balcones Fault Zone Edwards Aquifer (the aquifer) is the primary source of water for approximately 1.7 million people in the San Antonio area. It is also the primary water supply for ranchers and farmers in the south central Texas region. A variety of unique aquatic species also depend on the aquifer for survival. Numerous studies, reports and news articles involving a wide-range of topics pertaining to the aquifer have been published that further explain the economic and environmental importance of the aquifer to south central Texas.

This bibliography comprises multidisciplinary references to technical and general literature for three regions of the aquifer in Texas - the San Antonio segment; the Barton Springs segment, Austin area; and the northern segment, Austin area. The references in this bibliography are compiled from computerized data bases, published bibliographies, and reports. Dates of references range from the late 1800’s through 2010.

Purpose and Scope

The purpose of this multidisciplinary bibliography is to provide references to technical and general literature concerning the Edwards Aquifer. This bibliography comprises approximately 2,745 references for books, journals, magazine articles, conference proceedings, abstracts, technical reports, master’s theses, doctoral dissertations, maps, regulatory actions, web sites, and videos dating from the late 1800’s through 2010. This bibliography does not contain newspaper or newsletter articles relating to the Edwards Aquifer.

Portions of the bibliography were prepared by the United States Geological Survey (USGS). In 1995, Julie A. Menard, with the USGS, prepared the Bibliography of the Edwards Aquifer, Texas, Through 1993, in support of a study by the Center for Research in Water Resources, University of Texas (McKinney and Sharp, 1995). The USGS bibliography, completed in 1995, covered the time period from the late 1800’s through 1993.

In 1997, the Edwards Aquifer Authority (the Authority), under contractual agreement with David L. Gregory, and with assistance from Ramona Traynor-USGS librarian, compiled references published from the period 1993 through 1997 using the same computerized data bases from which the USGS prepared the earlier bibliography. Authority staff has updated and published this bibliography annually since 1998.
Description of the Edwards Aquifer

The San Antonio segment of the Balcones Fault Zone Edwards Aquifer in south central Texas is one of the largest and most important karst aquifer systems in the United States. The aquifer extends through parts of Kinney, Uvalde, Zavala, Medina, Frio, Atascosa, Bexar, Comal, Guadalupe, and Hays counties and covers an area approximately 180 miles long and five to 40 miles wide. The aquifer is the primary water source for much of this area, including the City of San Antonio and surrounding communities. Historically the cities of Uvalde, San Antonio, New Braunfels, and San Marcos were founded around large springs that discharge from the aquifer. As the region grew, wells were drilled into the aquifer to supplement water supplied by the springs. In addition, the Edwards Aquifer is the principal source of water for agriculture and industry in the region and provides springflow required for endangered species habitat, as well as recreational purposes and downstream uses in the Nueces, San Antonio, Guadalupe, and San Marcos river basins. The Edwards Aquifer transitions from freshwater to saline water along the south end of the artesian zone.

The Edwards Aquifer is contained within the Cretaceous-age Edwards Group limestone (Edwards Limestone) and associated units. The Edwards Limestone is generally capped by the Del Rio Clay and overlies the Upper Glen Rose Formation (upper unit of the Trinity Aquifer). The Edwards Limestone forms the top of the Edwards Plateau within the drainage area of the aquifer. However, the Edwards Limestone is missing from the south and east flanks of the plateau as a result of erosion along the Balcones Escarpment. Normal faulting, associated with the Balcones Fault Zone, has downfaulted the geologic units in this area, resulting in the formation of the Texas Hill Country by erosion across the fault scarps. Generally, from northwest to southeast across this region, the Edwards Limestone is exposed along much of the plateau area until reaching the Hill Country, where the older Glen Rose Formation is exposed throughout. Moving farther south and east, the Edwards Limestone is again present and exposed at the surface. This surface exposure is the recharge zone of the Edwards Aquifer. Farther south and east, downfaulting has dropped the Edwards Limestone even farther below the surface in the artesian zone of the Edwards Aquifer. Here the Edwards Aquifer produces freshwater from depths as great as 4,000 ft below the surface.

Water circulates through the Edwards Aquifer as part of the hydrologic cycle from recharge areas to discharge points (springs and wells). Approximately 1,250 square miles of Edwards Limestone is exposed at the ground surface and composes the recharge zone where water enters the aquifer. Streams flow south or east from the drainage area (the Texas Hill Country and Edwards Plateau) and lose all or most of their baseflow as they cross the recharge zone. In addition, part of the rain
that falls directly on the recharge zone also enters the aquifer. Groundwater moves through the aquifer and ultimately discharges from a number of locations, such as Leona Springs in Uvalde County, San Pedro and San Antonio springs in Bexar County, Hueco and Comal springs in Comal County, and San Marcos Springs in Hays County. In addition, domestic, livestock, municipal, agricultural, and industrial wells throughout the region withdraw water from the aquifer. The residence time of water in the aquifer ranges from a few hours or days to many years, depending on depth of circulation, location, and other aquifer parameters.

The Edwards Aquifer is a karst aquifer, characterized by the presence of sinkholes, sinking streams, caves, large springs, and a well-integrated subsurface drainage system. Within the artesian zone, it is one of the most productive groundwater systems in the United States, characterized by extremely high capacity water wells and high spring discharges. The aquifer exhibits extremely high (cavernous) porosity and permeability, characteristic of many karst aquifers. In contrast, aquifers that occur in sand and gravel or in other rock types, such as sandstone, have a much lower permeability. Because the Edwards Aquifer is known for having areas of high permeability, it allows the transmission of large volumes of water, enabling groundwater levels to respond quickly to rainfall (recharge) events.

Historically, water quality in the Edwards Aquifer has been protected by its great depth below population centers and undeveloped land in the recharge zone and drainage area. However, there are potential threats to the quality of water in the aquifer from various sources, including the transport and use of hazardous substances and other chemicals on the recharge zone, abandoned or poorly completed water wells, and urban nonpoint runoff. The high porosity and permeability of the Edwards Aquifer allow inflow of contaminants from the ground surface with little or no filtration.
Other Edwards Aquifer-related Bibliographies

As mentioned in Menard (1995): “Other bibliographies on the Edwards Aquifer provide important references, some of which are peripheral to the Edwards Aquifer and therefore, are not included herein. A bibliography of the Edwards Aquifer in the San Marcos area provides many annotated references and abstracts to biological, hydrological, limnological, recreational, and historical publications (Saunders, 1992). A bibliography prepared for the City of San Antonio has references and abstracts concerning pollution, hydrogeology, and runoff associated with the Edwards Aquifer and other limestone aquifers (Metcalf & Eddy, Inc., 1976). Finally, a list of Edwards Aquifer references, available in the University of Texas at Austin, Walter Geology Library, groups the references by document type and includes library call numbers (Trombatore, 1992).”

Methodology and Approach

The references contained in this bibliography (through 2010) were mainly compiled with the assistance of computer searches of many journal articles, conference papers, numerous data bases, and a manual search of published bibliographies and reports. Data bases reviewed by Menard (1995) were selected by conducting a preliminary search to identify the data bases with the most information on the Edwards Aquifer. The bulk of the references are from GeoRef and Water Resources Abstracts. ProCite© Personal Bibliographic Software, Inc., software was used to manage and format the bibliography and to generate subject and author indexes. References in related bibliographies and in key reports were read, and relevant reports not provided by the computerized search were added to the bibliography. Some terms in the subject index originated from the data base producers. References added to the bibliography from print sources were indexed. Many of
the terms were modified or deleted to improve subject access to the references. Additionally, headings and subheadings were created to consolidate related concepts. Modification and indexing decisions were guided by authoritative thesauri: Water Resources Thesaurus (U.S. Office of Water Research and Technology, 1980), GeoRef Thesaurus, and Guide to Indexing (Palmer, 1986).

Data bases searched for compiling the 1993 through 1997 bibliography addendum were selected based on the previous bibliography by Menard (1995) and edited to bring the bibliography addendum up to date. A Boolean search-word process was incorporated to narrow the reference searches to Edwards Aquifer topics. This process allowed the user to manually select word combinations that the data base used to find references containing such word combinations.

References Organization

The references are categorized by discipline, subdiscipline, and specific subdiscipline name. Subdisciplines under major disciplines are denoted with an arrow bullet (►) and specific subdiscipline names are denoted with a dot bullet (●). Entries are in alphabetical order by primary author or organization. Multiple references by one author are arranged in chronological order with the oldest reference listed first. Extensive efforts have been made to ensure that the references are correct. However, because of the manner in which they were compiled, some references might contain errors, or be incomplete.

In cases of overlap in subject matter between certain disciplines and subdisciplines, references were categorized under the predominant discipline, or subdiscipline. References that seemed to apply to more than two disciplines were categorized under “Overview Studies.” Others that did not appear to apply to any discipline were categorized under “Miscellaneous.” The 1993 through 1997 bibliography addendum added three new disciplines not found in Menard (1995). Some disciplines or subdisciplines used in Menard (1995) were omitted from this bibliography because no references appeared to fit them based on the search strategy used in the addendum.
Acknowledgments

From Menard (1995), “The compiler thanks Drs. Daene C. McKinney and Jack M. Sharp of the University of Texas, whose research supported this effort; also, Patrick J. Connor of the U.S. Fish and Wildlife Service; Dr. James F. Garber of Southwest Texas State University; Dr. Clark L. Hubbs of the University of Texas at Austin; and Dr. Glenn Longley of Southwest Texas State University, Edwards Aquifer Research and Data Center, who assisted in completing many references and in providing copies of several useful documents. Ernest T. Baker, Jr., and Marshall E. Jennings, USGS, provided extensive technical assistance. They reviewed the references for pertinence and noted omissions. Additionally, Ernest T. Baker, Jr., reviewed the subject index terms for relevance. George E. Groschen, USGS, provided numerous references.”

From 1997 addendum: “The compiler thanks: Marshall E. Jennings, USGS, and Dr. Glenn Longley of Southwest Texas State University, Edwards Aquifer Research and Data Center for their initial support in this effort. Romana Traynor - USGS librarian, Austin, Texas, provided the technical training and educational resources on the DIALOG Information System (1997). Additionally, I would like to thank Velma Danielson and Brock Curry, of the Authority, who suggested that I undertake this project.”

From updates: “The compiler of this updated bibliography thanks: Authority colleagues for their support, comments, and constructive criticism while proofreading the document. Your changes and comments are greatly appreciated. Dennis Trombatore - Walter Geology Library, and Amanda Masterson - Bureau of Economic Geology Publication Department, University of Texas at Austin, who provided the list of reports written by students, faculty, and researchers. Ed Oborney and BIO-WEST staff for their updated/annotated bibliographical data bases that provided numerous references included in the document they produced for the the Authority since the year 2004.”
References Cited in the Introduction

Overview Studies

Hill, R.T., 1901, Geography and geology of the Black and Grand Prairies of Texas, with detailed
descriptions of the Cretaceous formations and special reference to artesian waters: U.S.

Hill, R.T., and Vaughan, T.W., 1898, Geology of the Edwards Plateau and Rio Grande Plain
adjacent to Austin and San Antonio, Texas, with reference to the occurrence of underground
catfishes.

Hovorka, S.D., 1999, Getting the word out supplying local geologic information to teachers in a

for an Urban Highway, from Proceedings of the 1st International Conference on Water
Resources, Part 2 (of 2), San Antonio, Texas, USA, August 14-18, 1995, in International Water
1,316-1,320.

in the Austin area, Texas from Gulf Coast Association of Geological Societies, 44th annual
convention, Austin, Texas, October 5, 1994, GCAGS Field trip guidebook, 66 p.

Meeting of the Geological Society of America, College Station, TX, USA, March 16-15, 2004,

physicochemical properties and hydraulics of flow in and near the freshwater/saline-water
transition zone, San Antonio segment of the Edwards aquifer, south-central Texas, based on

Larsen, R.D.; Stephenson, R.J.; Skadberg, A., 2000, Using a Geographic Information System to
identify existing and potential future impacts on the Edwards Aquifer - A sole-source public
drinking water supply - from closed municipal solid waste landfills in the State of Texas in

National Fish Hatchery and Technology Center, (no date), An Overview of work performed at the hatchery: San Marcos National Fish Hatchery and Technology Center, San Marcos, Texas.

[http://twri.tamu.edu/reports/2002/tr201/tr201.pdf]

Archeology

Garber, J.F., and Orloff, M.D., 1985, Excavations of 41HY137 - an archaic site on the Balcones escarpment in San Marcos, Texas: La Tierra, vol. 11, p. 3.

Patterson, P.E., 1974, Upper San Marcos watershed, Hays County, Texas, An archaeological survey of areas proposed for modification: Austin, Texas, Texas Archaeological Survey Research Report 42.

Biography

Biology

Arsuffi, T.L., Skalberg, M.D., and Badough, M.C., 1992, Ecological studies of the Comal Springs

Beaty, H.E., 1976, Transplanting Zizania texana (Texas wildrice) in Bell County, Texas: Special Report by H.E. Beaty, September 1976, 11 p. [Also unpublished report at Baylor University, Waco Texas].

Biological Advisory Team (BAT), 2008, Hays County Habitat Conservation Plan, Recommendations for inclusion in the Hays County Habitat Conservation Plan, Proposal submitted to Citizens Advisory Committee and the Hays County Commissioners Court, June 3, 2008, 5 p.

http://www.hayscountyhcp.com/documents/BAT_Species_Recommendations_(draft_20080603c_clean).pdf

Geiser, S.W., 1934, Notes on Texas crustacea: Fields and Laboratory, vol. 2, p. 59-60.

Gould, F.W., 1975, Texas plants - A checklist and ecological summary: Austin, Texas, Texas Agricultural Experiment Station, Texas A&M State University, College Station, MP-585, 121 p.

Gould, F.W., 1975, The grasses of Texas: Austin, Texas, Texas Agricultural Experiment Station, Texas A&M University, College Station, p. 48-49.

Hubbs, C., 1995, Springs and spring runs as unique aquatic systems: Copeia, no. 4, p. 989-991.

Linam, G.W., Kleinsasser, L.J, and Mayes, K.B., 1999, Regionalization of the index of biotic integrity for Texas streams (Draft): Resourse Protection Division, Texas Parks and Wildlife Department, Austin, Texas.

Poole, J.M., 1992, Performance report as required by Endangered Species Act, Section 6-Texas Project E-1-3 Endangered and Threatened Species Conservation: Job No. 2.5: Conservation of the Upper San Marcos River System.

Power, P., 1995, Growth response by Texas wildrice (Zizania texana) under three current regimes and two sediments in Spring Lake, Hays County, Texas, in Proceedings of the 24th Water for Texas Conference, TWRI, College Station, Texas.

San Antonio River Authority, 1996, Evaluation of aquatic ecosystems of streams in the San Antonio River watershed based on rapid bioassessment protocols: San Antonio River Authority, Environmental Services Division, 186 p.

Scoggins, M., 2000, Effects of hydrology on bioassessment in Austin, Texas: City of Austin Watershed Protection, SR-00-02.

Sinclair, R.M., 1964, Water quality requirements of the family emilidae (Coleoptera), with keys to the larvae and adults of the eastern genera: Tennessee Stream Pollution Control Board, Tennessee Department of Public Health, Nashville, Tennessee, 14 p.

Southwest Texas State University-Biology Department, 1980, The San Marcos River: an unique biological environment, Jan 1980: Southwest Texas State University-Biology Department.

Texas Parks and Wildlife Department, (no date), Leaflet: Cagle’s map turtle: Endangered Resources Branch, 3 p.

_______, 1997, Biological opinion on the effects of the proposed disposal and redevelopment of Kelly AFB on the fountain darter (Etheostoma fonticola), Texas wildrice (Zizania texana), San Marcos salamander (Eurycea nana), Texas blind salamander (Typhlomolge rathbuni): U.S. Fish and Wildlife Service.

► Invertebrates

Federal Register, 1988, Endangered and threatened wildlife and plants – proposal to determine five Texas cave invertebrates to be endangered species: vol. 53, no. 75, p. 12,787-12,790.

Federal Register, 1988, Endangered and threatened wildlife and plants – final rule to determine five Texas cave invertebrates to be endangered species: vol. 53, no. 180, p. 36,029-36,033.

Richerson, J.VOL., 1982, Species diversity of macroinvertebrates in Cibolo Creek in Shafter, Texas, in Davis, J.R., ed., Proceedings of the Symposium on Recent Benthological Investigations in Texas and Adjacent States: Texas Academy of Science, Aquatic Sciences Section, p. 113-133.

U.S. Fish and Wildlife Service, 1988, Endangered and threatened wildlife and plants-proposal to determine five Texas cave invertebrates to be endangered species: Federal Register, vol. 53, no. 75, p. 12,787-12,790. Descriptors: Tooth Cave pseudoscorpion (Microcreagris texana), Tooth Cave spider (Leptoneta myopica), Bee Creek Cave harvestman (Texella reddelli), Tooth Cave ground beetle (Rhadine persephone), Kretschmarr Cave mold beetle (Texamurops reddelli), Austin, Williamson County, Travis County, Tooth Cave.

U.S. Fish and Wildlife Service, 1988, Endangered and threatened wildlife and plants-final rule to determine five Texas cave invertebrates to be endangered species: Federal Register, vol. 53, no. 180, p. 36,029-36,033. Descriptors: Tooth Cave pseudoscorpion (Microcreagris texana), Tooth Cave spider (Leptoneta myopica), Bee Creek Cave harvestman (Texella reddelli), Tooth Cave ground beetle (Rhadine persephone), Kretschmarr Cave mold beetle (Texamurops reddelli), Travis County, Williamson County.

- Crustaceans

Becker, P.R., 1969, The systematics and seasonal distribution of the Cladocera of Hays County: San Marcos, Texas, Southwest Texas State University, M.S. thesis, 95 p. Descriptors: San Marcos River, Blanco River, Barton Creek, Onion Creek, Bear Creek, Lone Man Creek, Purgatory Creek, Porter Creek, Bunton Branch Creek, Plum Creek.

Maguire, B.J., 1965, Mondella texana n.sp., and extension of the range of the crustacean order Thermosbaenacca to the western hemisphere, Crustaceana, vol. 9, p. 149-154.

- Insects

Arsuffi, T.L., 1993, Status of the Comal Spings riffle beetle (Heterelmis comalensis), Pick’s cave amphipod (Stygobromus pecki), and the Comal Springs drypid beetle (Stygoparnus comalensis): Prepared for the U.S. Fish and Wildlife Service, 25 p.

- Mollusks

Cheatum, E.P., 1939, An annotated list of snails from Texas and northern Mexico collected by C.D. Orchars: Field and Laboratory, 7, p. 10-16.

Plants, Algae, Fungi, Bacteria

Anderson, E., 1904, Plant societies of the Austin quadrangle: Austin, Texas, University of Texas, M.S. thesis.

Beaty, H.E., 1972, Zizania texana Hitchcock (Texas wild-rice), a rare and endangered species: Waco, Texas, Baylor University, unpublished, 31 p.

Bio-West, Inc., 2004, Aquatic Vegetation Laboratory Study - Phase 1: Observations of water quality changes and plant growth under various flows; Phase 2: Effects of carbon dioxide level on aquatic plants found in the Comal and San Marcos Springs/River Ecosystems, Final Report, Variable Flow Study, Project 802, Task 27, San Marcos National Fish Hatchery & Technology Center, San Marcos, Texas, [variously paged].

Poole, J.M., 1991, Performance report as required by Endangered Species Act, Section 6-Manangement and continued research on Texas wild-rice (Zizania texana): Texas Project E-1-3 Endangered and Threatened Species Conservation Job No. 38.

Richards, C.M., Reilley, A., Touchell, D., Antolin, M.F., and Walters, C., 2004, Microsatellite primers for Texas wild rice (Zizania texana), and a preliminary test of the impact of gryogenic storage on allele frequency at these loci: Conservation Genetics, vol. 5, p. 853-859.

Riskind, D.H., and Diamond, D.D., 1986, Plant communities of the Edwards Plateau of Texas-an overview emphasizing the Balcones escarpment zone between San Antonio and Austin with special attention to landscape contrasts and natural diversity, in Abbott, P.L., and Woodruff, C.M., Jr., eds., The Balcones escarpment-geology, hydrology, ecology and social development in central Texas: Geological Society of America, p. 21-32. Descriptors: Coryell County, Bell County, Travis County, Medina County, Bexar County, Kendall County, Bandera County, Uvalde County, Kinney County, Edwards County, and Real County.

Vertebrates

- Amphibians

Baker, J.K., 1961, Distribution of and key to the neotenic *Eurycea* of Texas: Southwest Naturalist, vol. 6, no. 1, p. 27-32.

Federal Register, 1994, Endangered and threatened wildlife and plants; Proposal to list the Barton Springs Salamander as endangered, 59 FR 7968, Thursday, February 17, 1994, VOL. 59, No. 033, (DIALOG® File 669).

Federal Register, 1995, Endangered and threatened wildlife and plants; Notice of six-month extension and reopening of Public Comment period on the proposed rule to list the Barton Springs Salamander as an endangered species, 60 FR 13105, Friday, March 10, 1995, VOL. 60, No. 047, (DIALOG® File 669).

Federal Register, 1995, Endangered and threatened wildlife and plants; 90-day finding for a petition to list the Comal Springs Salamander, 60 FR 31137, Tuesday, June 13, 1995, VOL. 60, No. 113, (DIALOG® File 669).

Federal Register, 1996, Endangered and threatened wildlife and plants; Withdrawal of proposed rule to list the Barton Springs Salamander as endangered, 61 FR 46608, Tuesday, September 04, 1996, VOL. 61, No. 172, (DIALOG® File 669).

Schram, M.D., 1995, Comments and recommendations for salamander conservation in the Travis County area: in A Review of the Status of Current Critical Biological and Ecological Information on the *Eurycea* Salamanders Located in Travis County, Texas, November 15, 1995, Prepared by the Aquatic Biological Assessment Team.

- **Fishes**

Chamberlain, D.A., and O'Donnell, L., City of Austin's captive breeding program for the Barton Springs and Austin blind salamanders: City of Austin, Watershed Protection and Development Review Department, [variously paged].

Gonzales, M., 1988, An examination of the biotic integrity of the upper San Antonio River based on fish community attributes: San Marcos, Texas, Southwest Texas State University, M.S. thesis, [variously paged].

_______, 1958, A checklist of Texas fresh-water fishes (revised ed.): Texas Game and Fish Commission IF Series 3, 14 p.

_______, 1971, Texas cave fishes, in Lundelius, E.L., Jr., and Slaughter, B.H., eds., Natural history of Texas caves: Dallas, Texas, Gulf Natural History, p. 91-93.

_______, (no date), List of rare and endangered minnows: Austin, Texas, University of Texas, Unpublished memo, 1 p.

Hubbs, C.L., and Johnson, M.V.O.L., 1961, Differences in the egg complement of *Hadropterus scierus* from Austin and San Marcos: Southwestern Naturalist, vol. 6, no. 1, p. 9-12.

Lowman, F.G., 1958, Basic survey and inventory of fish species present, as well as their distribution in the San Marcos River, its tributaries and watershed lying within Hays, Caldwell, Guadalupe and Gonzales Counties, Texas: Austin, Texas, Texas Game and Fish Commission, Continuation of Job B-18, Project F-9-R-4.

Mount, D., 1982, Aquatic surrogates, in U.S. Environmental Protection Agency, Surrogate Species Workshop, TR-507-36B.

Suttkus, R.D., 1961, Additional information about blind catfishes from Texas, Southwestern Naturalist, vol. 6, p. 55-64.

Texas Parks and Wildlife Department, 1959, Basic survey and inventory of fish species present, as well as their distribution in the San Marcos River, its tributaries and watershed lying within Hays, Caldwell, Guadalupe, and Gonzales Counties, Texas: Texas Parks and Wildlife Department Project F-9-R-5, Job B-18, 14 p.

Texas Parks and Wildlife Department, 1956, Basic survey and inventory of fish species present, as well as their distribution in the Blanco River, its tributaries and water lying within Blanco, Kendall, and Hays Counties, Texas: Texas Parks and Wildlife Department Project F-9-R-3, Job B-10, 29 p.

U.S. Fish and Wildlife Service, (no date), Exotic Snail and Associated Exotic Parasites Affecting Fishes and Waterfowl in Texas: San Marcos National Fish Hatchery and Technology Center.

Climatology

Larkin, T.J., and Bomar, G.W., 1983, Climatic atlas of Texas: Texas Department of Water Resources @ LP-192, 151 p.

Martinez, K., 1998, Implementation of a lumped-parameter ground water model to the study of climate change impacts in the Edwards aquifer, Texas: Austin, Texas, University of Texas, Department of Civil Engineering, MS thesis, [variously paged].

Education

Austin Nature & Science Center, 1995, Splash! Into the Edwards Aquifer: a proposal for a new educational exhibit and program facility, Austin, Texas, 8 p.

Charbeneau, N.J., 1988, The Edwards Aquifer, the Balcones fault zone-Austin region, an educational unit: Austin, Texas, Travis Audubon Society, Educational Committee, [variously paged].

KUHT-TV, 1983, The river of innocence-the story of the San Marcos River: Houston, Texas, KUHT-TVOL. (Available in ¾-inch videocassette or @ 16-millimeter reel, 59 minutes).

Motion Film Service, (no date), The Edwards story [Motion picture], prepared for Edwards Underground Water District, 15 minutes.

Sturrock, J.L., 1996, Knowledge and attitudes of sixth grade elementary students concerning the importance of water quality and quantity in the Barton Spring: Austin, Texas, University of Texas, M. Education thesis, 107 p.

Geochemistry

Zhang, C., 1994, Microbial geochemistry of groundwater in deep aquifers, central and east central Texas: Austin, Texas, Texas A&M University, College Station, Ph.D. dissertation, 119 p.

Geology

Barnes, V.E., 1974, Geologic atlas of Texas, Seguin sheet: Austin, Texas, University of Texas Bureau of Economic Geology, scale 1:250,000.

Barnes, V.E., and Rose, P.R., 1981, Geologic atlas of Texas, Llano sheet: Austin, Texas, University of Texas Bureau of Economic Geology, scale 1:250,000.

Brown, T.E., Jr., Waechter, N.B., Rose, P.R., and Barnes, V.E., 1983, Geologic atlas of Texas, San Antonio sheet: Austin, Texas, University of Texas Bureau of Economic Geology, scale 1:250,000.

Collins, E.W., 2000, Geologic map of the New Braunfels, Texas 30 x 60 minute Quadrangle: Geologic framework of an urban growth corridor along the Edwards aquifer, south central Texas: Austin, Texas, University of Texas Bureau of Economic Geology, no. 39, 28 p.

Lambert, P.F., 1988, Geology of the northeastern portion of the Fredonia quadrangle, San Saba County, Texas: Odessa, Texas, University of Texas of the Permian Basin, M.S. thesis, 2 plates, map 1:24,000. Descriptors: Valley Spring Gneiss, Riley Formation, Marble Falls Limestone, Hensel Sand Member (of Travis Peak Formation), Edwards Limestone, Llano Estacado, Precambrian, Cambrian, Wilberns Formation, Pennsylvanian, Carboniferous.

Liddle, R.A., 1918, Geology and mineral resources of Medina County: University of Texas Bulletin 1860, 178 p

Lonsdale, J.T., 1927, Igneous rocks of the Balcones fault region of Texas: Austin, Texas, University of Texas Bulletin, 2744, 178 p.

McKalips, D., Rose, P.R., and Lozo, F.E., Jr., 1981, Geologic atlas of Texas, Sonora sheet: Austin, Texas, University of Texas Bureau of Economic Geology, scale 1:250,000.

Ogden, A.E., 1985, Geologic and hydrologic maps of the San Marcos area: San Marcos, Texas, Southwest Texas State University, Report to the City of San Marcos, 41 p.

Rodd, P.U., Garner, L.E., and Dawe, G.L., 1970, Austin west quadrangle, Travis County, Texas: Austin, Texas, University of Texas Bureau of Economic Geology, Geological Quadrangle Map 38, 11 p., scale 1:24,000.
Rose, P.R., 1972, Edwards Group, surface and subsurface central Texas: Austin, Texas, University of Texas, Bureau of Economic Geology Investigation No. 74, p. 24-26.

Sellards, E.H., 1919, The geology and mineral resources of Bexar County, Texas: Austin, Texas, University of Texas Bulletin 1932, 202 p.

University of Texas, Bureau of Economic Geology, 1985, The Guadalupe-Lavaca-San Antonio-Nueces River Basins regional study-Seguin west-Austin sheets: Austin, Texas, University of Texas Bureau of Economic Geology, scale 1:250,000.

Waechter, N.B., Lozo, F.E., Jr., and Barnes, V.E., 1977, Geologic atlas of Texas, Del Rio sheet: Austin, Texas, University of Texas Bureau of Economic Geology, scale 1:250,000.

Whitney, F.L., 1923, Geologic map of area from Bexar to Williamson counties, Texas: Austin, The University of Texas, Unpublished map, 1 sheet.

Whitney, F.L., Young, K, and Brooks, W.L., 1959, Geologic map of the N.W. San Marcos 15’ Quadrangle Texas: Austin, Texas, University of Texas Bureau of Economic Geology, Miscellaneous Map 16, 1 sheet.

►Economic Geology

Getzendaner, F.M., 1931, Mineral resources of Texas, Uvalde County, Bureau of Economic Geology Mineral Resources Pamphlet, Austin, University of Texas, Austin, Texas, p. 93-111.

Fletcher, S., 2000, Embattled Texas product pipeline takes major step forward: Oil & Gas Journal, vol. 98, no. 50, p. 72-75.

Grimshaw, T.W., 1976, Environmental geology of urban and urbanizing areas-a case study from the San Marcos area: Austin, Texas, University of Texas, Ph.D. dissertation, 244 p.

Woodruff, C.M., Jr., 1975, Land capability in the Lake Travis vicinity, Texas - a practical guide for the use of geological and engineering data: Austin, Texas, University of Texas, Bureau of Economic Geology Report of Investigations 84, 37 p.

Woodruff, C.M., Jr., and Marsh, W.M., 1992, Soils, landforms, hydrologic processes, and land-use issues-Glen Rose Limestone terrains, Barton Creek watershed, Travis County, Texas: Society of Independent Professional Earth Scientists, Austin, Texas, Central Texas Chapter Field Report and Guidebook [variously paged], [Available from TerraSyn, Inc., 1119 Beard St., Flint, MI 48503].

► Paleontology

Graham, R.W., 1976, Pleistocene and Holocene mammals, taphonomy and paleoecology of the Friesenhan Cave local fauna, Bexar County, Texas: Austin, Texas, University of Texas, Ph.D. dissertation, 233 p.

Person, C.P., and Daghlian, C.P., 1975, Isolated cuticles from the Middle Cretaceous of central Texas, in Miller, C.N., chairperson, Abstracts of papers to be presented at the meetings of the Botanical Society of America and certain affiliated groups at Oregon State University, Corvallis, Oregon: Columbus, Ohio, Botanical Society of America, p. 23.

Toomey, III, R.S., 1993, Late Pleistocene and Holocene faunal and environmental changes at Hall’s Cave, Kerr County, Texas: Austin, Texas, University of Texas, Ph.D. dissertation, 561 p.

Sedimentation, Sedimentary Petrology

Southwestern Association of Student Geological Societies, 1979, Comanchean sedimentation of central Texas: Nacogdoches, Texas, Stephen F. Austin State University, Southwest Association of Student Geological Societies, Fall Field Trip, 90 p. Descriptors: Paluxy Sand, Walnut Formation, Edwards Limestone, Kiamichi Formation, Duck Creek Formation, Fort Worth Limestone, Denton Clay, Weno Clay, Pawpaw Formation, Main Street Limestone, Grayson Formation, Woodbine Sand, Pepper Shale Member of Woodbine Formation, Goodland Limestone, Mesozoic.

► Stratigraphy

Rose, P.R., 1959, Carboniferous Stratigraphy of the Hall Area, San Saba County, Texas: Austin, Texas, Univesity of Texas, M.A. thesis, p. N/A.

Rose, P.R., 1968, Edwards Formation, surface and subsurface, central Texas: Austin, Texas, University of Texas, Ph.D. dissertation, 387 p.

Rose, P.R., 1972, Edwards Group, surface and subsurface, central Texas: Austin, Texas, University of Texas, Bureau of Economic Geology Report of Investigations 74, 198 p.

Tucker, D.R., 1962, Subsurface Lower Cretaceous stratigraphy, central Texas, in Contributions to the geology of South Texas: San Antonio, Texas, South Texas Geological Society, p. 177-217. [Also published as the University of Texas, Ph.D. dissertation, 137 p.]

►Structural Geology

142

146

Southwestern Association of Student Geological Societies, 1975, Structural geology of central Texas: Waco, Texas, Baylor University, 102 p.

Geomorphology and Caves

150

Veni, G., 1988, The caves of Bexar County, 2d ed.: Austin, Texas, University of Texas, Texas Memorial Museum Speleological Monograph 2,300 p.

History

Corner, W., 1890, San Antonio de Bexar, San Antonio: Bainbridge and Corner, p. N/A.

Dobie, D.R., 1948, A brief history of Hays County and San Marcos, Texas: San Marcos Texas, p. N/A.

Hydrology and Hydrogeology

Harringer, T.L., 1987, Development of the northern segment of the Edwards Aquifer as a major water supply, in Hydrogeology of the Edwards Aquifer in the northern Balcones and Washita Prairie segments: Waco, Texas, Baylor University, p. 27-42.

Holt, C.L.R., Jr., 1959, Geology and ground-water resources of Medina County, Texas: U.S. Geological Survey Water-Supply Paper 1422, 213 p. [Also published as Texas Board of Water Engineers Bulletin 5601, 278 p., 1956].

Hovorka, S.D., and Dutton, A.R., 2001, Aquifers of Texas: Austin, University of Texas, Bureau of Economic Geology, Paged-sized color map and text, scale: 1 inch = 100 miles.

Lang, J.W., 1954, Ground-water resources of the San Antonio area, Texas - a progress report of current studies: Texas Board of Water Engineers Bulletin 5412, 30 p.

Livingston, P.P., 1947, Ground-water resources of Bexar County, Texas: Texas Board of Water Engineers Miscellaneous Publication 13, 240 p.

Mace, R.E., 2001a, Estimating Transmissivity using Specific-Capacity data: Austin, Texas, University of Texas, Bureau of Economic Geology Geological Circular, no. 01-2, 44 p., 18 figs.

Reeves, R.D., 1969, Ground-water resources of Kerr County, Texas: Texas Water Development Board Report 102, 58 p.

Texas Department of Water Resources, 1979, Records of wells, chemical analyses, and water levels of selected Edwards Aquifer wells, Bexas County, Texas: TDWR Report 237.

Engineers, Fort Worth District and San Antonio, Texas, Edwards Underground Water District, 2 volumes, [variously paged].

►Floods and Droughts

Baker, VOL.R., 1975, Flood hazards along the Balcones escarpment in central Texas-alternative approaches to their recognition, mapping, and management: Austin, Texas, University of Texas, Bureau of Economic Geology Geological Circular 75-5, 22 p. Descriptors: Pedernales River Valley, Blieders Creek, Comal River.

Bomar, G.W., 1978, An analysis of weather conditions relative to the occurrence of flash flooding in central Texas (during the period of July 30 to August 4, 1978): Texas Department of Water Resources @ LP-69, 37 p.

Kelton, E., 1996, Bone dry, Texas Monthly (ITXM), vol. 24, no. 7, p. 74-75+.

San Antonio River Authority, 1996, Salado Creek watershed protection and flood prevention project: San Antonio River Authority Fact Sheet, 2 p.

Texas Board of Water Engineers, 1959, Summary of peak flood flow measurements and other measurements of stream discharge in Texas at points other than gaging stations: Texas Board of Water Engineers Bulletin 5807C, 255 p.

Groundwater Movement

Groundwater Recharge, Recharge Zone

City of San Antonio, 1988, Petro chemical storage inventory: Edwards Aquifer Recharge Zone: San Antonio, Texas, Department of Water Resources Management, City of San Antonio, 1 vol., [variously paged].

► Springs, Groundwater Discharge

Budge, T.J., 2008, Delineating contributing areas for karst springs using NEXRAD data and cross-correlation analysis: Austin, Texas, University of Texas, Ph.D. dissertation, 188 p.

City of Austin, 1985, Barton Springs water quality trend analysis: City of Austin, Environmental and Conservation Services Department Water Quality Report 4.

Livingston, P.P., 1942, A few interesting facts regarding the natural flow from artesian well 4 owned by the San Antonio Public Service Co.: Texas Board of Water Engineers Miscellaneous Publication 240, 10 p.

Wanakule, N., 1988, Regression analysis of the San Marcos Spring flows and water levels of the index well in San Antonio: San Marcos, Texas, Southwest Texas State University, Edwards Aquifer Research and Data Center Report R1-88, 72 p.

►Surface Water/Groundwater Relationship

Livingston, P.P., 1947, Relationship of ground water to the discharge of the Leona River in Uvalde and Zavala Counties, Texas: Texas Board of Water Engineers Miscellaneous Publication M284, 81 p.

Texas Center for Policy Studies, 2002, Community and economic benefits of Texas rivers, springs and bays, from Conference Proceedings in Lady Bird Johnson Wildflower Center, Austin, Texas.

► Water Quality

Austin Business Journal (Texas), 1995, TxDOT projects pave way for development on aquifer, TxDOT Attempting to solve how to protect natural water sources from pollution contained in road, June 9, 1995, p. 4.

Berryman, M.E., 1993, A ground water and a contamination potential analysis using a geographic information system, from American Water Resources Association, Texas Section fall meeting on Man’s effect on hydrologic systems, Austin, Texas, USA, December 10, 1993, in Kuniansky, Eve L., Man’s effect on hydrologic systems, Balcones Research Center, Austin, Texas, p. 66-72.

City of Austin, 1984, Hydrologic and water quality data for Barton Creek Square Mall and Alta Vista PUD, interim water quality reports: City of Austin, Environmental and Conservation Services Department Water Quality Report 2.

City of Austin, 1984, Lake Austin/Town Lake water quality data analysis: City of Austin, Environmental and Conservation Services Department Water Quality Report 1.
City of Austin, 1984, Stormwater quality modeling for Austin creeks: City of Austin, Environmental and Conservation Services Department Water Quality Report 3.

_______, 1986, City of Austin stormwater monitoring program description: City of Austin, Environmental and Conservation Services Department Water Quality Report 5.

_______, 1990, Storm runoff and baseflow water quality modeling studies for Austin creeks: City of Austin, Environmental and Conservation Services Department Water Quality Report 8.

_______, 1990, Stormwater pollutant loading-characteristics for various land uses in the Austin area: City of Austin, Environmental and Conservation Services Department Water Quality Report 7.

Evans, D.S., 1974, Quality of groundwater in Cretaceous rocks of Williamson and eastern Burnet Counties, Texas: Austin, Texas, University of Texas, M.S. thesis, 103 p.

Flores, R., 1990, Test well drilling investigation to delineate the downdip limits of usable-quality ground water in the Edwards Aquifer in the Austin region, Texas: Texas Department of Water Resources Report 325, 70 p. Descriptors: Travis County, Williamson County, Bell County, Hays County.

►Water-Resources Data

Barnes, B.A., 1938, Hays County, Texas, records of wells and springs, drillers’ logs, water analyses and map showing location of wells: Texas Board of Water Engineers Miscellaneous Publication 114, 31 p.

Bennett, R.R., and Cromack, G.H., 1940, Kinney County, Texas, records of wells, driller’s logs, water analyses, and map showing locations of wells: Texas Board of Water Engineers Miscellaneous Publication 154, 38 p.

Cumley, J.C., Cromack, G.H., and Follett, C.R., 1942, Records of wells and springs, drillers’ logs, water analyses, and map showing location of wells and springs in Williamson County, Texas: Texas Board of Water Engineers Miscellaneous Publication 298, 94 p.

http://www.edwardsaquifer.org/pdfs/Reports/Hydro%20Reports/Final%202007%20Hydrologic%20Data%20Report.pdf

Edwards Aquifer Research and Data Center, 2000, Bad Water Line Monitoring Database: Southwest Texas State University, Freeman Bldg., San Marcos, Texas 78666 USA,

Frazier, J.M., Jr., 1939, Edwards County, Texas, records of wells and springs, drillers’ logs, water analyses, and map showing location of wells and springs: Texas Board of Water Engineers Miscellaneous Publication 78, 30 p.

Frazier, J.M., Jr., 1940, Kendall County, Texas, records of wells, drillers’ logs, water analyses, and maps showing locations of wells: Texas Board of Water Engineers Miscellaneous Publication 152, 50 p.

George, W.O., Cumley, J.C., and Follett, C.R., 1941, Records of wells and springs, drillers’ logs, water analyses, and map showing locations of wells and springs in Travis County, Texas: Texas Board of Water Engineers Report, 102 p.

Michal, E.J., 1937, Comal County, Texas, records of wells, drillers’ logs, and water analyses, and map showing location of wells: Texas Board of Water Engineers Miscellaneous Publication 58, 42 p.

► Water-Resources Planning and Management

Alamo Soil and Water Conservation District; Bexar-Medina-Atascosa Counties Water Control and Improvement District; Medina Soil and Water Conservation District; Department of Agriculture, Natural Resources Conservation Services, 1997, Water Conservation Plan; Atascosa, Bexar, and Medina counties, Texas: EPA no. 970239D, 90 p.

Anonymous, 1992, Effectiveness of alternative systems being monitored in Kerr County: On-Site Insights, vol. 1, no. 1, p. 3.

Anonymous, 2000, New plant increases city’s water options: The American City & County, vol. 11, no. 17, p. 48-49

Bexar Metropolitan Water District, 1998, Habitat Conservation plan and environmental evaluation of ESA Section 10(a) Permit Application from Bexar Met for Endangered Species in the Comal and San Marcos Springs Ecosystems: Bexar Metropolitan Water District.

City of Austin, 1992, Comprehensive watershed ordinance: City of Austin, [variously paged].

City of San Antonio, City Water Board, 1964, Progress report on status of San Antonio’s efforts to obtain a supplemental water supply: San Antonio, Texas, City Water Board, 67 p.

Edwards Underground Water District, 1988, Regional water resources plan: Draft 1: recommended by the Joint Committee on Water Resources of the San Antonio City Council and the Edwards Underground Water District, Board of Directors.

HDR Engineering, Inc., 1989, Hays County water and wastewater study: Hays County Water Development Board, [variously paged].

HDR Engineering, Inc., 1994, Trans-Texas Water Program, West central study area, Phase I, Interim Report volume 2, [variously paged].

______, 1998b, Trans-Texas Water Program, West central study area, Phase II, Updated Evaluation of Potential Reservoirs in the Guadalupe River Basin, [variously paged].

______, 1998c, Trans-Texas Water Program, West central study area, Phase II, Population, Water Demand, and Water Supply Projections, [variously paged].

HDR Engineering, Inc., 2000, Desalination for Texas Water Supply, Austin, Texas, [variously paged].

McCarl, B., Jones, L., Jordan, W., Williams, R.L., and Dillon, C., 1993, Economic and Hydrologic Implications of Proposed Edwards Aquifer Management Plans, from Department of Agriculture Economy, Texas A & M University, College Station, Texas, Texas Water Resources Institute, vol. 158, 30 p. [Also in New Waves, vol. 6, no. 3, p. 4.]

Pena, J.G., and Jenson, R., 1992, Irrigation water use conservation potential and the economic implications of adopting more efficient irrigation technology: the case in the Uvalde County: College Station, Texas, Department of Agriculture Economics, Texas A&M University, 8 p.

Potter, A., 1912, A report upon and an appraisement of the water-supply system of the City of San Antonio, Texas: San Antonio, Texas, Consulting Engineers report to the City of San Antonio.

Sharp, J.M., Jr., 2002, The Edwards Aquifer: will there be water for Texas?: Austin, Texas, University of Texas, Department of Geological Sciences, Environmental Science Institute, 1 CD-ROM.

Texas Agricultural Experiment Station, 2002, Brush management/Water yield feasibility studies for eight watersheds in Texas: Texas Agricultural Experiment Station, Texas, at URL: http://waterhome.brc.tamus.edu/researchcenters/blackland/duglas/.

_______, 1992, Projections of population and water demands: Texas Water Development Board, Austin Texas, p. N/A.

Tremallo, R., 2000, Edwards Aquifer Authority well construction and well registration programs, in Southwest Focus Ground Water Conference 2000, Austin, Texas (USA), May 17-18, 2000.

U.S. Department of Interior, 1973, Memorandum: Performance of Edwards aquifer when subjected to rapid increase in well discharge: Bureau of Reclamation (Southwest Region).

U.S. Department of Interior, 1974, Memorandum: Performance of Edwards aquifer when subjected to rapid increase in well discharge: Bureau of Reclamation (Southwest Region).

Wanakule, N., and Anaya, R., 1994, Development of a simplified, easy to use Computer Simulation Model for the Edwards Aquifer, from The Edwards Aquifer Research and Data Center, Southwest Texas State University, San Marcos, Texas, USA, in New Waves, vol. 7, no. 2, p. 3.

Watershed Protection Department, 1999, Barton Springs zone development analysis: staff presentation to the Mayor and City Council Planning, Environmental and Conservation Services Dept. Austin, Texas, 28 p.

Watkins, D.W., Jr., 1997, Optimization techniques for the planning and management of robust water resources systems (Stochastic optimization, decision analysis): Austin, University of Texas, Ph.D. dissertation, 336 p.

Water Use

Jackson, W.A., Anderson, T., Harvey, G., Orris, G., Rajagopalan, S., and Kang, N., 2006, Occurrence and formation of non-anthropogenic perchlorate: Texas Tech University, Department of Civil Engineering, Lubbock, TX, United States (USA), 63 p.

Reinert, A., 1988, This water is my water: Texas Monthly, vol. 16, iss. 11, p. 128-135.

Texas Center for Policy Studies, 2002, Community and economic benefits of Texas rivers, springs and bays from Conference Proceeding of Lady Bird Johnson Wildflower Center, Austin, Texas, [variously paged].

Land Use

Recreation

Berryhill, M., 1996, Birdie in the bottomlands (Golf course will destroy Columbia Bottomlands on the Texas coast): Audubon, vol. 98, no. 4, p. 96-99.

Federal Register, 1994, Coastal Barrier Improvement Act; Property Availability; Royal Palm Golf Estates, Collier County, FL; Summit Hill One, Bexar County, Texas, 59 FR 13348, Monday, March 21, 1994, VOL. 59, No. 054, (DIALOG® File 669).

Luckens, B., and Ferguson, D.VOL., 1984, Recreation and natural areas guide-Austin subregion of the Edwards Aquifer: San Marcos, Texas, Southwest Texas State University, Edwards Aquifer Research and Data Center Guide G1-84, 24 p. Descriptors: Bell County, Blanco County, Burnet County, Hays County, Lampasas County, Travis County, Williamson County.

Texas A&M University, 1975, San Marcos River: a water-based recreation and landscape plan: Department of Landscape Architecture, College Station, Texas, p. N/A.

Remote Sensing

Soils

Miscellaneous

Anonymous, (no date), Drinking Water: Projects that may damage sole source aquifers are not always identified: GAO, Washington, DC, 22 p.

Baxter, T., 1996, Ecoregion roundup (activities of local Sierra Club chapters): Sierra, vol. 81, no. 6, p. 64.

Ford, G.D., 2000, Jump right in at Barton Springs: Southern Living, Birmingham, vol. 35, no. 8, p. 34.

Leethy, A.M., 1988, The Edwards Aquifer: Crisis or cooperation?: San Marcos, Texas, Southwest Texas State University, Presented to the Honors Committee of Southwest Texas State University in partial fulfillment of the requirements for graduation in the Honors Program, vol. 9, [variously paged].

Tood, B., 2003, Context in environmental conflict: Where you stand depends on where you sit: Environmental Practice, Environmental Practice: Journal of the National Association of Environmental Professionals vol. 5, no. 3, p. 256-264.

