LEAK DETECTION SURVEY REPORT
FOR
SOUTHWEST TEXAS STATE UNIVERSITY
SAN MARCOS, TEXAS

June 14, 1993 - June 18, 1993
August 16, 1993

Mr. Dwight Sturdivant
Southwest Texas State University
Physical Plant
San Marcos, Texas 78666

Dear Mr. Sturdivant:

We are pleased to submit this final report of the leak detection survey performed on the Southwest Texas State University water distribution system. A summary of findings is reported in separate categories for your convenience.

The Edwards Underground Water District (District) appreciates the cooperation and assistance you have provided during the leak detection survey. Special thanks to Mr. Doug Purgess and Mr. Jesse Gomez for their attention and patience during the survey. The District hopes that the information provided herein will be beneficial to the University in identifying and targeting areas of water loss and potential loss.

This survey has demonstrated the water saving potential of the Leak Detection Program. Maintaining the best possible program is vital in order to continue the successes that have been realized. For this reason, the District is soliciting your comments, both positive and negative, and any suggestions you may have on how to improve our program.

Please respond to this request candidly, as the District cannot improve on deficiencies or support positive measures without the knowledge of such conditions.

Enclosed is a water audit form. The District requests that this form be completed and returned to the District within six months after all detected leaks have been repaired. This information will assist the District in our continued assessment of the Leak Detection Program.
Should you require additional information regarding this report or have any water related questions, please do not hesitate to call.

Sincerely,

Charles E. Ahrens
Water Resources Planner III

James R. Shipley
Leak Detection Technician II

CEA:JRS/bmc
Enclosures

001jrs
EDWARDS UNDERGROUND WATER DISTRICT

LEAK DETECTION/LOCATION SURVEY REPORT
FOR
SOUTHWEST TEXAS STATE UNIVERSITY
SAN MARCOS, TEXAS
JUNE 14, 1993 - JUNE 18, 1993

PREPARED BY:
Division of Planning and Environmental Management
Leak Detection Program
June, 1993
On June 3, 1993, the Edwards Underground Water District (EDWD) received a completed application form from Southeast Texas State University requesting a leak detection/location survey on its distribution system. A pre-survey conference was held June 4th to further discuss the work to be performed. It was decided that EDWD would perform some leak detection on all available access points, computerized leak location as needed, record and track all leaks and defects. A final report was submitted, along with a revised water plat, with the final report.

SUMMARY

DISCUSSION

RECOMMENDATIONS

COMMENTS

ENCLOSURES TO REPORT

A. Revised Master Water System Distribution Plats
B. Blank Follow-up Water Audit Forms

EDWD technicians detected a total of 5 leaks. This total included 4 main hydrant leaks, 1 meter box leak, and 1 valve leak. Over the course of the survey, EDWD surveyed a total of 125 access points including 147 valves, 17 hydrants and 34 meters. It was determined that 75,847 gallons of water per day has been saved by the repair of the leaks discovered. Additionally, 12 main valves and 1 fire hydrant were not located. Two valve stacks need repair and two are missing lids.
SUMMARY

On June 3, 1993, the Edwards Underground Water District (EUWD) received a completed application form from Southwest Texas State University requesting a leak detection/location survey on its water distribution system. A pre-survey conference was held June 11, 1993 at the University Physical Plant to discuss the work to be performed. It was agreed that EUWD would perform sonic leak detection on all available access points, computerized leak location as needed, record any unusual system conditions found, and submit to the University a revised master water plat with the final report.

John E. Gapinski of EUWD began the survey on June 14, 1993, and the survey was concluded on June 18, 1993. Over the course of the survey, EUWD surveyed a total of 185 access points including 147 valves, 17 fire hydrants, 9 service connections, and 12 other access points covering 8.05 miles of distribution mains. Computer leak sound correlation was performed on 4 locations.

EUWD technicians detected a total of 8 leaks. This total included 4 main line leaks, 2 fire hydrant leaks, 1 meter box leak, and 1 valve leak. EUWD estimates 298,080 gallons of water per day has been saved by the repair of 3 detected leaks as of June 18, 1993. The leaks discovered during the survey range from 126,720 gallons per day to a small meter box leak.

As part of the survey, EUWD noted 12 main valves and 1 fire hydrant that could not be located. Additionally, two valve stacks need repair and two are missing lids.

JRS/bmc
001jrs
DISCUSSION

A. Total Access Points Surveyed.. 185

The following number of access points were used during the survey:

1. Valves: 147
2. Fire Hydrants: 17
3. Service Connections: 9
4. Others: 12

B. Total Miles of Distribution Main Surveyed.......................... 8.05

C. Total Estimated Water Saved by Repair of Detected Leaks for Gallons per day ... 298,080

Leakage estimates for main line leaks are based on hole size and system pressure in P.S.I. This information was furnished by SWTSU personnel when EUWD was not on site at the time of repairs. Totals are only recorded for leaks repaired as of June 18, 1993 with leakage estimates.

D. Total Leaks Detected.. 8

Main line leaks were located by computer correlation of leak sounds. Valve, fire hydrant, and meter box leaks were located through access points to access point surveying.

1. Main Line Leaks: 4
 I. 4" C.I. main on Pleasant St. in front of Music Bldg.: 63,360 G.P.D.
 II. 4" C.I. main on LBJ across from Taylor Murphy History Bldg.: 126,720 G.P.D.
 III. Flange leak at Home Economics Bldg.: Pending
 IV. 2" Galv. main from Aqua Sports Center to Tennis Courts: 108,000 G.P.D.

2. Fire Hydrant Leaks: 2
 I. South of Blanco Hall: Pending
 II. Near Freeman Aquatic Biology Bldg.: Pending

3. Valve Leaks: 1
 I. Concho St. at LBJ Dr.: Pending

4. Meter Box Leaks: 1
 I. Blanco Bldg.: Pending
E. Unresolved Leak Sounds

1. Butler Hall
2. Performing Arts Center
3. Art Bldg.
4. Technology I
5. Near Central Chiller Plant

F. General Maintenance Needed

1. Valve Stacks Needing Cleaning: 1
 I. Women’s Residence Tower
2. Valve Stacks Needing Raise to Grade: 1
 I. Elliot Bldg.
3. Valve Stacks Missing Lids: 2
 I. Butler Bldg.
 II. Women’s Residence Parking Garage
 Fire Hydrant Valve
4. Valves Needing Repair, But Not Leaking: 1
 I. Technology Bldg. I
5. Valves Unable to Survey: 11
 I. State St. Fire Line Valve Between LBJ Dr. and Guadalupe Dr.
 II. 5" Valve to Beretta Hall
 III. Valve to Beretta Hall
 IV. Valve to Flowers Hall
 V. Valve to Education Center on Edward Gay
 VI. Valve at Science Bldg.
 VII. Valve at Hines Academic Center
 IX. Valve at Jackson Hall
 X. 2 valves at Arnold Hall
 XI. Valve at new construction site west of Academy St. near Sessions Dr.

6. Fire Hydrants Unable to Survey
 I. Edward Gary at LBJ Student Center
 II. New construction site west of Academy St. near Sessions

G. Revised Master Water Plats included with this report

1. Codes

Yellow indicates mains and services were surveyed from access points only.

Blue indicates mains and services were surveyed with a ground microphone and from access points.
2. Abbreviations Used on Revised Master Plats:

- UTL - Unable to Locate
- UTS - Unable to Survey
- NC - Needs Cleaning
- RTG - Raise to Grade
- CCNH - Curb Cock not Holding
- FHWV - Fire Hydrant with Valve
- PH - Fire Hydrant Without Valve
- ARV - Air Relief Valve
- PCV - Pressure Control Valve

3. All mains were surveyed from all available access points. When the spacing of access points was too great to survey properly, a ground microphone was used in combination.

4. All valves located were surveyed. When direct contact could not be made on a valve, a probe rod was used.

5. Fire hydrants labeled on the plat as fire hydrants without lead valves are hydrants where the lead valve could not be located or does not exist.

6. Any item circled on the plat indicates that it was added, could not be located, or needs repair.

7. All mains, fire hydrants, water services, blow-offs, and main line valves hand drawn on the plats are for access point accounting. The location and placement of these items on the plat is intended to indicate what was actually found during the field survey. Placement of hand drawn main valves on the plat is the technicians best guess of what they control. Every effort was made to ensure the accuracy of these plats, but EUWD does not guarantee their accuracy.
RECOMMENDATIONS

I. Install meters on all water services, even if the consumer is not to be billed. Set reasonable and prudent usage standards for each type of water use. There is no inducement to the consumer to conserve or use water wisely when water is supplied without charge or without usage limits. The potential benefits of metering to the University are numerous:

A. Conservation of a precious and valuable resource.

B. Potential reduction in water consumption and related waste water treatment costs.

C. Help stretch existing supplies to meet increasing needs. This could help defer the construction of new facilities such as new wells, booster stations, storage tanks, or distribution systems upgrades.

D. Allows the University to identify and verify all water use and determine water system efficiency.

E. Gives the University the tools needed to select and implement programs to enhance efficiency, prevent loss, and foster water conservation.

II. Consider ductile iron pipe for the primary main line material used for new installation and main replacement. As the production costs of water increase, the need for routine systemwide leak detection surveys will also increase. Leak sounds generated in metallic pipe are louder and have a tendency to travel further than those developed in non-metallic pipe.

Ductile iron pipe has a proven history of long service life and its sound carrying characteristics for leak detection are far superior to any other type of pipe material.

JRS/bmc 003jrs
COMMENTS

We greatly appreciate the assistance and cooperation we received from the management and staff of Southwest Texas State University. We commend your interest in water conservation and are grateful for the opportunity to survey your water system.

The active participation of Doug Purgess, Jesse Gomez, and the other staff members that assisted in this survey, was greatly appreciated. Their knowledge, experience, and professional work habits contributed to its success.

Your efforts and timely repair of the leaks recorded in this report have saved a significant amount of precious water. Our thanks to all the staff for their efforts in helping to conserve the Edwards Aquifer.

Sincerely,

John E. Gapinski
Leak Detection Technician I

James R. Shipley
Leak Detection Technician II

JEG:JRS/bmc

004jrs